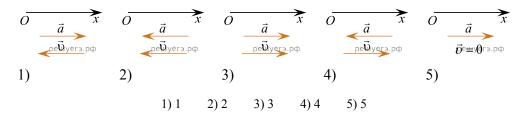
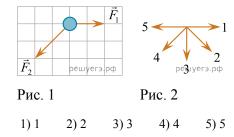
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

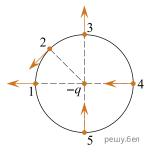
1. Физическим явлением является:

1) секунда 2) скорость 3) линейка 4) плавление 5) килограмм


2. Во время испытания автомобиля водитель держал постоянную скорость, модуль которой указывает стрелка спидометра, изображённого на рисунке. За промежуток времени $\Delta t = 18$ мин автомобиль проехал путь s, равный:


3. Подъемный кран движется равномерно в горизонтальном направлении со скоростью, модуль которой относительно поверхности Земли $\upsilon=30$ см/с , и одновременно поднимает вертикально груз со скоростью, модуль которой относительно стрелы крана u=40 см/с. Модуль перемещения Δr груза относительно поверхности Земли за промежуток времени $\Delta t=1,0$ мин равен:

1) 30 m 2) 25 m 3) 20 m 4) 15 m 5) 10 m


4. Кинематический закон движения материальной точки вдоль оси Ox имеет вид: $x(t) = 8 + 2t - 3t^2$, где координата x выражена в метрах, а время t — в секундах. Скорость \vec{v} и ускорение \vec{a} материальной точки в момент времени t_0 = 0 с показаны на рисунке, обозначенном цифрой:

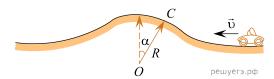
5. К некоторому телу приложены силы $\overrightarrow{F_1}$ и $\overrightarrow{F_2}$, лежащие в плоскости рисунка (см. рис. 1). На рисунке 2 направление ускорения \overrightarrow{d} этого тела обозначено цифрой:

6. Правильные направления векторов \vec{E} напряжённости электростатического поля, создаваемого отрицательным точечным зарядом -q, указаны на рисунке в точках, обозначенных цифрами:

7. Если абсолютная температура тела изменилась на $\Delta T = 50 \; \mathrm{K}$, то изменение его температуры Δt по шкале Цельсия равно:

1)
$$\frac{50}{273}$$
 °C 2) $\frac{273}{50}$ °C 3) 50 °C 4) 223 °C 5) 323 °C

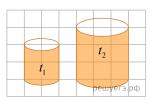
8. При изобарном нагревании идеального газа, количество вещества которого постоянно, объем газа увеличился в k=1,40 раза. Если температура газа возросла на $\Delta t=120$ К,то начальная температура T_1 газа была равна:

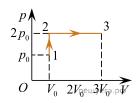

9. В некотором процессе над термодинамической системой внешние силы совершили работу $A=25~\rm{Д}$ ж, при этом внутренняя энергия системы увеличилась на $\Delta U=40~\rm{Д}$ ж. Количество теплоты Q, полученное системой, равно:

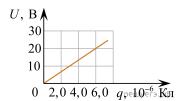
10. Установите соответствие между прибором и физической величиной, которую он измеряет:

	А. АмперметрБ. Барометр		1) сила тока		
			2) электрическое напряжение		
			3) атмосферное давление		
1) A	.1Б2	2) А1Б3	3) А2Б1	4) A2Б3	5) A3E

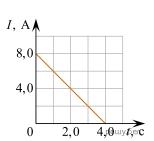
- **11.** Из одной точки с высоты H бросили два тела в противоположные стороны. Начальные скорости тел направлены горизонтально, а их модули $\upsilon_1=5$ м/с и $\upsilon_2=10$ м/с. Если расстояние между точками падения тел на горизонтальной поверхности земли L=45 м, то чему равна высота H? Ответ приведите в метрах.
- 12. Кинематические законы движения двух материальных точек, движущихся вдоль оси Ox, имеют вид $x_1=A_1+B_1t, \ x_2=A_2+B_2t,$ где $A_1=-30$ м, $B_1=27$ $\frac{\mathrm{M}}{\mathrm{C}},\ A_2=22$ м, $B_2=-12$ $\frac{\mathrm{M}}{\mathrm{C}}.$ Модуль скорости одной материальной точки относительно другой равен ... $\frac{\mathrm{M}}{\mathrm{C}}.$


- 13. Трактор при вспашке горизонтального участка поля двигался равномерно со скоростью, модуль которой $\upsilon = 7,2$ км/ч, и за промежуток времени $\Delta t = 0,50$ ч израсходовал топливо массой m = 5,4 кг. Если модуль силы тяги трактора F = 15 кH, а коэффициент полезного действия трактора $\eta = 27$ %, то удельная теплота сгорания q топлива равна ... **МДж/кг**.
- **14.** Автомобиль массой m=1,1 т движется по дороге, профиль которой показан на рисунке. В точке C радиус кривизны профиля R=0,41 км. Направление на точку C из центра кривизны составляет с вертикалью угол $\alpha=30,0^o$. Если модуль силы давления автомобиля на дорогу в этой точке F=7,7 кH, то модуль скорости v автомобиля равен ... $\frac{M}{C}$.


15. В вертикально расположенном цилиндре под легкоподвижным поршнем, масса которого m=3,00 кг, а площадь поперечного сечения S=15,0 см 2 , содержится идеальный газ (см. рис.). Цилиндр находится в воздухе, атмосферное давление которого $p_0=100$ кПа. Если начальная температура газа и объем $T_1=280$ К и $V_1=2,00$ л соответственно, а при изобарном охлаждении изменение его температуры $\Delta T=-140$ К, то работа $A_{\rm BH}$, совершенная внешними силами, равна ... Дж.


16. Два однородных цилиндра (см. рис.), изготовленные из одинакового материала, привели в контакт. Если начальная температура первого цилиндра $t_1 = 23$ °C, а второго — $t_2 = 58$ °C, то при отсутствии теплообмена с окружающей средой установившаяся температура t цилиндров равна ... °C.

- 17. При изотермическом расширении одного моля идеального одноатомного газа, сила давления газа совершила работу $A_1 = 0,52$ кДж. Если при последующем изобарном нагревании газу сообщили в два раза большее количество теплоты, чем при изотермическом расширении, то изменение температуры ΔT газа в изобарном процессе равно ... \mathbf{K} .
- **18.** Идеальный одноатомный газ, количество вещества которого постоянно, переводят из начального состояния 1 в конечное состояние 3 (см. рис.). При переходе из начального состояния в конечное газ получил количество теплоты $Q=92~\mathrm{к}\mbox{Д}\mbox{ж}$. Если объём газа в начальном состоянии $V_0=100~\mathrm{л}$, то давление p газа в конечном состоянии равно ... кПа.



19. График зависимости напряжения U на конденсаторе от его заряда q изображён на рисунке. Если заряд конденсатора $q=6,0\cdot 10^{-6}$ Кл, то чему равна энергия электростатического поля W конденсатора? Ответ приведите в микроджоулях.

20. В идеальном колебательном контуре, состоящем из последовательно соединенных конденсатора и катушки с индуктивностью $L=16,0\,$ мГн, происходят свободные электромагнитные колебания с периодом T. Если амплитудное значение силы тока в контуре $I_{\rm max}=250\,$ мА, то энергия $W_{\rm L}$ магнитного поля катушки в момент времени t=T/12 от момента начала колебаний (подключения катушки к заряженному конденсатору) равна ... мкДж.

- **21.** В идеальном колебательном контуре происходят свободные электромагнитные колебания. Амплитудное значение напряжения на конденсаторе $U_0 = 1.9$ В, а амплитудное значение силы тока в контуре $I_0 = 60$ мА. Если электроёмкость конденсатора C = 0.25 мкФ, то частота v колебаний в контуре равна ... кГц.
- **22.** На дифракционную решетку падает нормально параллельный пучок монохроматического света длиной волны $\lambda=500$ нм. Если максимум четвертого порядка отклонен от перпендикуляра к решетке на угол $\theta=30,0^{\circ}$, то каждый миллиметр решетки содержит число N штрихов, равное
- **23.** Маленький заряженный шарик массой m=4,0 мг подвешен в воздухе на тонкой непроводящей нити. Под этим шариком на вертикали, проходящей через его центр, поместили второй маленький шарик, имеющий такой же заряд $(q_1=q_2)$, после чего положение первого шарика не изменилось, а сила натяжения нити стала равной нулю. Если расстояние между шариками r=30 см, то модуль заряда каждого шарика равен ... нКл.
- **24.** Два одинаковых положительных точечных заряда расположены в вакууме в двух вершинах равностороннего треугольника. Если потенциал электростатического поля в третьей вершине $\varphi = 30 \text{ B}$, то модуль силы F электростатического взаимодействия между зарядами равен ... нН.
- **25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 А, C=-0,50 $\frac{\mathrm{A}}{\mathrm{c}}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.
- **26.** Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal{E}=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.
- **27.** Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту $\alpha=30^\circ$ с постоянной скоростью $\vec{\upsilon}$. Сила сопротивления движению электроскутера прямо пропорциональна его скорости: $\vec{F}_c=-\beta\vec{\upsilon}$, где $\beta=1,25$ $\frac{\text{H}\cdot\text{c}}{\text{M}}$. Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя $\eta=85\%$, то модуль скорости υ движения электроскутера равен ... $\frac{\text{M}}{c}$.
- **28.** На рисунке представлен график зависимости силы тока I в катушке индуктивностью L=7.0 Гн от времени t. ЭДС $\mathcal{E}_{\mathbf{c}}$ самоиндукции, возникающая в этой катушке, равна ... В.

29. Идеальный колебательный контур состоит из конденсатора электроёмкостью C=150 мкФ и катушки индуктивностью $L=1{,}03$ Гн. В начальный момент времени ключ K разомкнут, а конденсатор заряжен (см. рис.). После замыкания ключа заряд конденсатора уменьшится в два раза через минимальный промежуток времени Δt , равный ... мс.

30. Луч света, падающий на тонкую рассеивающую линзу с фокусным расстоянием |F|=30 см, пересекает главную оптическую ось линзы под углом α , а продолжение преломлённого луча пересекает эту ось под углом β . Если отношение $\frac{\operatorname{tg}\beta}{\operatorname{tg}\alpha}=\frac{5}{2},$ то точка пересечения продолжения преломлённого луча с главной оптической осью находится на расстоянии f от оптического центра линзы, равном ... см.